in Computational Collective Behavior

BRENT EXKRIDGE

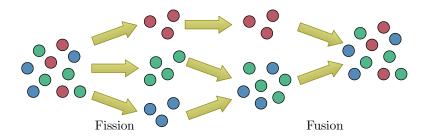
Sample robot team scenario

- Consider an MRS engaging in a search & rescue task
- Group splits up to cover more ground
- Subgroup enters a building that requires a larger group
- Another subgroup decides to merge with the first to help
- ► All subgroups merge as they return home

Current state-of-the-art

- Existing approaches for artificial systems:
 - ► Tend to search for optimal sub-groups
 - ► Focus on multi-agent systems, not multi-robot systems
- Emergent coordination doesn't make these assumptions
 - Only focuses on the macro and not individual decision-making

Hyena society


Fission-fusion society

Definition

"A society consisting of casual groups of variable size and composition, which form, break up and reform at frequent intervals." [1]

- ► Group splits (fission) when costs > benefits
- ► Groups merge (fusion) when costs < benefits
- Dynamic process size & composition change frequently
- Relieves tension caused by conflicts of interest

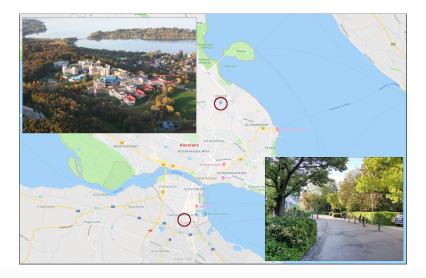
Fission-fusion society (*cont'd*)

Motivation

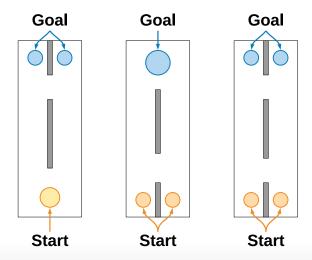
- Read more biology research papers than computer science
- ► Minimal formal training in biology
- Biological perspective into collective behavior
- Practical experience in collective behavior research

Iain Couzin

Couzin Lab Overview


Konstanz, Germany

Background



Konstanz, Germany (Zoomed)

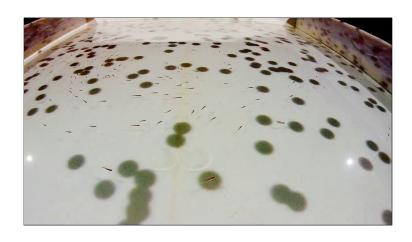
Background

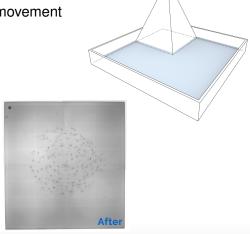
Promoting Fission-fusion Events

Experimental Setup

- Lab designed and operated by Dan Bath
- Sunbleaks (Leucaspius delineatus)
- Observation tanks
 - ► One 3x3m tank
 - ► Multiple 1x1m tanks
- ► IR lighting and cameras
- Moving patterns projected on tank bottom

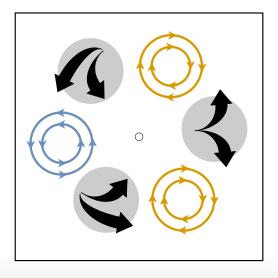
Image available at https://en.wikipedia.org/wiki/Leucaspius delineatus


Fish Observation Tanks

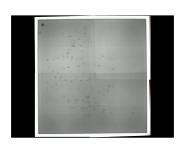

Visual Stimuli

Stitching Videos

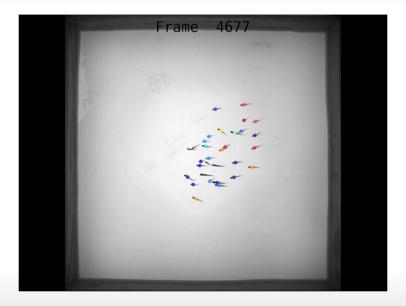
- ▶ 4 IR cameras record movement
- Must be stitched
- ▶ Different perspectives



Experimental Protocol


- ► Approval for new protocols can take 6 weeks or more
- Research stay was a total of 7 weeks
- Unable to use original plan of introducing obstacles
- Had to find a way to use existing protocols

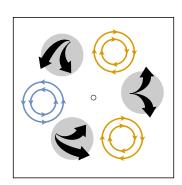
Complex Visual Stimuli Pattern



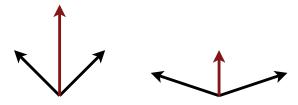
Stitching Problems


- ► Stitching is hard!
- ► Fish cast shadows
- Different angles for different cameras
- ► Light refracts in water

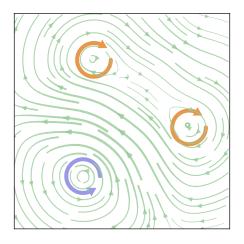
Position Tracking



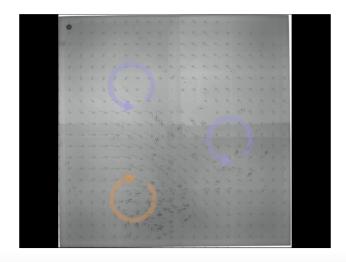
Deep Learning


Incorrect Behavior

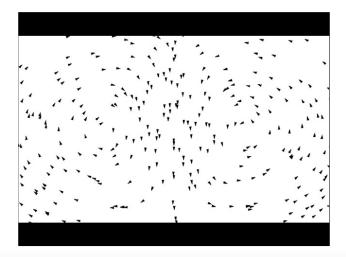
- Lot's of downtime due to challenges
- ► Tried using data we had
- Nothing made sense
- Movement was nothing like we predicted



Fly Movement


- Vivek Sridhar is researching fly movement
- Presents two targets
- ▶ When angle is small, flies add vectors
- ▶ When angle is large, flies choose one

Flow Following



Flow Following - Complex

Background Sabbatical Research Plan Challenges Progress Wrapu

Visual Stimuli Rework

Acknowledgments

- Southern Nazarene University
- ▶ Iain Couzin
- Dan Bath
- University of Konstanz
- German Academic Exchange Service (DAAD Deutscher Akademischer Austauschdienst)
- Portions of this material is supported by the National Science Foundation under Grant No. RI-1617838

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Questions?

References

L. Conradt and T.J. Roper.

Consensus decision making in animals.

Trends in Ecology & Evolution, 20(8):449-456, 2005.

Slideshow

